Albert Einstein’s theory of general relativity is more than a hundred years old, but still it gives physicists headaches. Not only are Einstein’s equations hideously difficult to solve, they also clash with physicists’ other most-cherished achievement, quantum theory.

Problem is, particles have quantum properties. They can, for example, be in two places at once. These particles also have masses, and masses cause gravity. But since gravity does not have quantum properties, no one really knows what’s the gravitational pull of a particle in a quantum superposition. To solve this problem, physicists need a theory of quantum gravity. Or, since Einstein taught us that gravity is really curvature of space-time, physicists need a theory for the quantum properties of space and time.

It’s a hard problem, even for big-brained people like theoretical physicists. They have known since the 1930s that quantum gravity is necessary to bring order into the laws of nature, but 80 years on, a solution isn’t anywhere in sight. The major obstacle on the way to progress is the lack of experimental guidance. The effects of quantum gravity are extremely weak and have never been measured, so physicists have only math to rely on. And it’s easy to get lost in math.

The reason it is difficult to obtain observational evidence for quantum gravity is that all presently possible experiments fall into two categories. Either we measure quantum effects—using small and light objects—or we measure gravitational effects—using large and heavy objects. In both cases, quantum gravitational effects are tiny. To see the effects of quantum gravity, you would really need a heavy object that has pronounced quantum properties, and that’s hard to come by.

Physicists do know a few naturally occurring situations where quantum gravity should be relevant. But it is not on short distances, though I often hear that. Non-quantized gravity really fails in situations where energy-densities become large and space-time curvature becomes strong. And let me be clear that what astrophysicists consider “strong” curvature is still “weak” curvature for those working on quantum gravity. In particular, the curvature at a black hole horizon is not remotely strong enough to give rise to noticeable quantum gravitational effects.

Curvature strong enough to cause general relativity to break down, we believe, exists only in the center of black holes and close by the Big Bang. In both cases the strongly compressed matter has a high density and a pronounced quantum behavior which should give rise to quantum gravitational effects. Unfortunately, we cannot look inside a black hole, and reconstructing what happened at the Big Bang from today’s observations, with present measurement techniques, cannot reveal the quantum gravitational behavior.