Double Star Systems May Be Hiding a Third Companion

700_4e1cb738b61d74924488b2febc26ee95Pairs of stars with separations five hundred times the size of the solar system could be triplets in disguise. New research indicates that many of the known wide binaries (double star systems) may have once contained three stars, and many could still harbor a third.

Bound together by gravity, binary stars make a large percentage of the universe. While most are close, some pairs can orbit with separations thousands of times larger than the distance between the Earth and the sun, known as an astronomical unit. But the wide spread between the two stars means that they couldn’t have formed in the same cloud of dust and gas, leaving astronomers to puzzle over how they formed.

“This has been a long-time mystery about these very wide binaries,” Bo Reipurth, of the University of Hawaii at Manoa, told

Scientists estimate that as many as 10 percent of stars in the universe are part of wide binaries. Close examination of many of these pairs can sometimes reveal that the central body is not one but two closely orbiting stars, making some wonder just how common such triple systems are.

Working with Seppo Mikkola of Finland’s University of Turku, Reipurth proposed that three stars within a cloud of molecular gas and dust are gravitationally bound together soon after formation. The group starts their lives close together, but interactions between the three eventually result in one of the stars being hurled from the group. A strong enough push could remove the star from the system completely, but a weaker one results in a distant orbit. Sometimes the system may last for tens of thousands of centuries before losing the distant star; other times, it may stabilize enough to last billions of years.

The energetic kick that pushes the third star out also drives the two remaining stars together in a close binary. If the ejection comes while the stars are still embedded within the cloud, the remaining pair can even merge together into a single star, making the final system a true binary.

Reipurth described the cloud as “a little bit like walking in mud.” “You feel a resistance,” he said. The drag can cause the pair to spiral together and eventually merge.

( via )